10 research outputs found

    Simultaneous Estimation of Vehicle Sideslip and Roll Angles Using an Integral-Based Event-Triggered Hinfinity Observer Considering Intravehicle Communications

    Get PDF
    In recent years, several technological advances have been incorporated into vehicles to ensure their safety and ride comfort. Most of these driver-assistance technologies aim to prevent skidding, whereas less attention has been paid to the avoidance of other dangerous situations such as a rollover. Since knowledge of slip and roll angles is critical to the control and safety of vehicle handling, their estimation remains of great interest when addressing emerging constraints in modern technologies involving networked communications and distributed computing. This paper presents an integral-based event-triggered H ¿ observer to simultaneously estimate the sideslip and roll angles, considering intravehicle communications with a networked-induced delay. As the longitudinal velocity and tire cornering stiffness of a vehicle can vary significantly during driving and have a strong influence on vehicle lateral stability, these time-varying parameter uncertainties are considered in the design of the observer. The simulation and experimental results demonstrate the effectiveness of the proposed observer.This work was supported by the Agencia Estatal de Investigacion (AEI) of the Ministry of Science and Innovation of the Government of Spain through the project RTI2018-095143-B-C2

    Autonomous path following and emergency braking control for intelligent vehicles using low cost devices

    Get PDF
    Proceeding of: 15th International Symposium on Advanced Vehicle Control (AVEC '22), September 12-15, 2022, Kanagawa, JapanThe novelty of this paper is an Event-Triggered LPV Output-Feedback H∞ controller that generates a steering control signal to follow the road, an acoustic sensor based AEB-P system which avoids vehicle collision with pedestrians and a speed controller based on the curvature of the path. The validation of the proposed system is done through simulation tests with CarSim®This work was supported by the FEDER/Ministry of Science and Innovation - Agencia Estatal de Investigación (AEI) of the Government of Spain through the project [RTI2018-095143-B-C21]

    Simultaneous Estimation of Vehicle Sideslip and Roll Angles Using an Event-Triggered-Based IoT Architecture

    Get PDF
    In recent years, there has been a significant integration of advanced technology into the automotive industry, aimed primarily at enhancing safety and ride comfort. While a notable proportion of these driver-assist systems focuses on skid prevention, insufficient attention has been paid to addressing other crucial scenarios, such as rollovers. The accurate estimation of slip and roll angles plays a vital role in ensuring vehicle control and safety, making these parameters essential, especially with the rise of modern technologies that incorporate networked communication and distributed computing. Furthermore, there exists a lag in the transmission of information between the various vehicle systems, including sensors, actuators, and controllers. This paper outlines the design of an IoT architecture that accurately estimates the sideslip angle and roll angle of a vehicle, while addressing network transmission delays with a networked control system and an event-triggered communication scheme. Experimental results are presented to validate the performance of the IoT architecture proposed. The event-triggered scheme of the IoT solution is used to decrease data transmission and prevent network overload.Funding. Grant [ PID2022-136468OB-I00 ] funded by MCIN/AEI/ 10.13039/501100011033 and by “ERDF A way of making Europe”

    Project ARES: Driverless transportation system. Challenges and approaches in an unstructured road

    Get PDF
    This article belongs to the Special Issue Intelligent Control of Mobile Robotics.The expansion of electric vehicles in urban areas has paved the way toward the era of autonomous vehicles, improving the performance in smart cities and upgrading related driving problems. This field of research opens immediate applications in the tourism areas, airports or business centres by greatly improving transport efficiency and reducing repetitive human tasks. This project shows the problems derived from autonomous driving such as vehicle localization, low coverage of 4G/5G and GPS, detection of the road and navigable zones including intersections, detection of static and dynamic obstacles, longitudinal and lateral control and cybersecurity aspects. The approaches proposed in this article are sufficient to solve the operational design of the problems related to autonomous vehicle application in the special locations such as rough environment, high slopes and unstructured terrain without traffic rules.Research is supported by the Spanish Government through the CICYT projects (PID2019-104793RB-C31 and RTI2018-096036-B-C21), the Comunidad de Madrid through SEGVAUTO-4.0-CM (P2018/EMT-4362) and through EAI of the Ministry of Science and Innovation of the Government of Spain project RTI2018-095143-B-C2

    Detection of people and vehicles through radar system and artificial vision for autonomous driving

    No full text
    Grado en Ingeniería en Tecnologías Industriale

    Diseño de sistemas de automatización de la conducción basados en control robusto para la mejora de la seguridad y el confort en vehículos automóviles

    No full text
    Mención Internacional en el título de doctorDe acuerdo con los datos proporcionados por la Dirección General de Tráfico, la cifra de víctimas por siniestros viales en España fue de 119.695 en el año 2021, de las cuales, 1.533 fallecieron. El factor humano es la causa principal de que se produzcan accidentes, ya bien debido a conductas temerarias o baja capacidad de reacción por parte de los conductores. Con el fin de mejorar la seguridad durante la conducción y reducir la posibilidad de que se produzcan accidentes, actualmente los vehículos incorporan diferentes sistemas de automatización de la conducción. Según el estándar SAE-J3016, estos sistemas se clasifican en 6 niveles dependiendo de su complejidad, desde ”no automatización” hasta ”completamente autónomo”. El nivel 0 corresponde a un vehículo sin automatización en el que el conductor controla las tareas de conducción dinámica (DDT, Dynamic Driving Task), siendo apoyado por sistemas de seguridad activa, como son el sistema de frenada de emergencia, el asistente de mantenimiento de carril y los sistemas de suspensión activa, entre otros. Aunque a día de hoy, los sistemas de seguridad activa ya están incorporados en los vehículos de producción serie, todavía existen retos respecto a su diseño como es tratar la aparición de fallos tanto en sensores como actuadores o la existencia de incertidumbres y perturbaciones externas para que el comportamiento dinámico del vehículo no se vea afectado por ellos. Los niveles 1 y 2 corresponden con las funciones de apoyo al conductor y cuentan con sistemas para el control longitudinal y lateral del vehículo como son el control de crucero adaptativo y el asistente de aparcamiento. Los niveles 3 y superiores corresponden con los sistemas de automatización de la conducción (ADS, Automated Driving System). Dentro de estos últimos niveles, una de las tareas más importantes es el seguimiento de trayectoria que guía al vehículo para que siga un camino deseado, el cual ha sido previamente generado por un sistema de planificación de la trayectoria. Todos los sistemas mencionados anteriormente requieren del montaje de sensores, controladores y actuadores en el propio vehículo. Estos dispositivos están conectados entre sí mediante redes de comunicación, lo que produce un retardo en la transmisión de la información, pudiendo afectar al comportamiento dinámico del vehículo, haciéndolo incluso inestable. Como solución, se están diseñando sistemas de control bajo un análisis de estabilidad con funcionales que incluyen este retardo. Por otra parte, si se envía una gran cantidad de información a la red en un tiempo reducido, esta se puede saturar, imposibilitando la comunicación entre los diversos elementos conectados. Este problema se solventa mediante la integración de mecanismos de disparo de eventos en la transmisión, cuya función es descartar paquetes de información irrelevantes. Por todos los motivos mencionados, los dos objetivos principales de la presente Tesis Doctoral son: 1) Diseño de un sistema de suspensión activa tolerante a fallos en los actuadores considerando retrasos en la red de comunicación para mejorar la seguridad del vehículo y el confort de los ocupantes que incluye, además, un mecanismo de disparo de eventos para reducir la información enviada a la red y evitar su saturación. 2) Diseño de un sistema de seguimiento de trayectoria combinado con un sistema de estabilidad de balanceo considerando retrasos en la red de comunicación y un mecanismo de disparo de eventos. Los sistemas propuestos han sido validados mediante el software comercial de simulación de dinámica vehicular CarSim. Los resultados obtenidos demuestran la eficacia de estos sistemas.According to data provided by the Directorate General of Traffic, the number of road accident victims in Spain was 119.695 in 2021, of which 1.533 died. The human factor is the main cause of accidents occurring, either due to reckless behaviour or poor reaction capacity on the part of drivers. In order to improve driving safety and reduce the possibility of accidents, vehicles are nowadays equipped with different driving automation systems. According to the SAEJ3016 standard, these systems are classified into 6 levels depending on their complexity, from ”no automation” to ”fully autonomous”. Level 0 corresponds to a vehicle with no automation in which the driver controls the dynamic driving tasks (DDT), supported by active safety systems such as emergency braking, lane keeping assist and active suspension systems, among others. Although today, active safety systems are already incorporated in series production vehicles, there are still design challenges such as dealing with sensor and actuator failures and external uncertainties and disturbances so that the dynamic behaviour of the vehicle is not affected by them. Levels 1 and 2 correspond to driver support functions and include systems for longitudinal and lateral vehicle control such as adaptive cruise control and parking assistance. Levels 3 and above correspond to the automated driving systems (ADS). Within these latter levels, one of the most important tasks is path following, which guides the vehicle to follow a desired path that has been previously generated by a path planning system. Level 3 or higher functionalities include vehicle steering control to achieve trajectory tracking and speed control to adapt to road conditions. The main problem with these systems lies in the model used for the design of the control law. Many investigations simplify the study of vehicle behavior by relying on kinematic models according to Ackermann geometry, which ignores effects such as tire-road contact, or the lateral inertial and rolling behavior of the vehicle. In order to achieve a safer behavior, the design of the controller should be performed following more complex vehicle models, which take into account the above mentioned aspects. All the aforementioned systems require the installation of sensors, controllers and actuators in the vehicle itself. These devices are connected to each other via communication networks, which causes a delay in the transmission of information and can affect the dynamic behaviour of the vehicle, even making it unstable. As a solution, control systems are being designed under stability analysis with functionalities that include this delay. On the other hand, if a large amount of information is sent to the network in a short time, the network can become saturated, making communication between the various connected elements impossible. This problem is solved by integrating event triggering mechanisms in the transmission, whose function is to discard irrelevant information packets. For all the above mentioned reasons, the two main objectives of this Doctoral Thesis are: 1) Design of an active suspension system tolerant to actuator failures considering delays in the communication network to improve vehicle safety and occupant comfort that includes, in addition, an event triggering mechanism to reduce the information sent to the network and avoid its saturation. 2) Design of a trajectory tracking system combined with a roll stability system considering delays in the communication network and an event triggering mechanism. The proposed systems have been validated using the commercial vehicle dynamics simulation software CarSim. The results obtained demonstrate the effectiveness of these systems.Esta Tesis Doctoral se ha desarrollado dentro del proyecto nacional competitivo Intelligent Driving Safety System under an IoT platform with low-cost devices (RTI2018- 095143-BC21) apoyado a través de ”FEDER/Ministerio de Ciencia e Innovación - Agencia Estatal de Investigación (AEI)” del Gobierno de España.Programa de Doctorado en Ingeniería Mecánica y de Organización Industrial por la Universidad Carlos III de MadridPresidente: Marco Ceccarelli.- Secretario: Juan Antonio Cabrera Carrillo.- Vocal: Felipe Jiménez Alons

    Detection and Identification of Pedestrians and Vehicles Using Radar for Driving Assistance

    No full text
    [Resumen] El desarrollo de sistemas de ayuda a la conducción, ADAS (Advanced Driver Assistance Systems), ha dado lugar a un significativo descenso en el número de accidentes. Los fabricantes de automóviles han desarrollado sistemas para facilitar la labor al conductor en circulación a altas velocidades o avisar al conductor de situaciones de inminente peligro, bien mediante señales visuales o sonoras. Estos sistemas presentan el inconveniente de la dependencia de la respuesta al estímulo por parte del conductor. El objetivo básico del trabajo ha consistido en la detección automática, mediante técnicas de radar y redes neuronales, de cuerpos que se encuentren delante de un vehículo, tanto vehículos como peatones, para aumentar la seguridad. Puede señalarse que aproximadamente el 85% de las mediciones realizadas son identificadas correctamente por la red neuronal. La información será utilizada para avisar al conductor o para la actuación automática sobre el freno y la dirección del vehículo, para evitar la colisión.[Abstract] The development of systems for driving assistance, ADAS (Advanced Driver Assistance Systems), has led to a significant decrease in the number of accidents. Car manufacturers have developed systems to facilitate the work to the driver in circulation at high speeds or warn the driver of situations of imminent danger, either by visual or audible signals. These systems have the drawback of the dependence of the response to the stimulus by the driver. The basic objective of the work has been the automatic detection, by radar techniques and neural networks, of bodies that are in front of a vehicle, both vehicles and pedestrians, to increase safety. It can be noted that approximately 85% of the measurements made are correctly identified by the neural network. The information will be used to warn the driver or for the automatic action on the brake and the direction of the vehicle, to avoid the collisionMinisterio de Economía y Competitividad; DPI-3695

    Tire Slip H∞ Control for Optimal Braking Depending on Road Condition

    Get PDF
    Tire slip control is one of the most critical topics in vehicle dynamics control, being the basis of systems such the Anti-lock Braking System (ABS), Traction Control System (TCS) or Electronic Stability Program (ESP). The highly nonlinear behavior of tire–road contact makes it challenging to design robust controllers able to find a dynamic stable solution in different working conditions. Furthermore, road conditions greatly affect the braking performance of vehicles, being lower on slippery roads than on roads with a high tire friction coefficient. For this reason, by knowing the value of this coefficient, it is possible to change the slip ratio tracking reference of the tires in order to obtain the optimal braking performance. In this paper, an H∞ controller is proposed to deal with the tire slip control problem and maximize the braking forces depending on the road condition. Simulations are carried out in the vehicular dynamics simulator software CarSim. The proposed controller is able to make the tire slip follow a given reference based on the friction coefficient for the different tested road conditions, resulting in a small reference error and good transient response

    H∞ dynamic output feedback control for a networked control active suspension system under actuator faults

    No full text
    This paper presents an investigation of the event-triggered control problem for an active suspension system featuring a networked communication architecture and Dynamic Output Feedback Controller (DOFCs) while taking into account the possibility of failure in actuators. The event-triggering condition determines when it is necessary to transmit the observed variables of the plant to the controller, in order not to saturate the network. A Dynamic Output Feedback Controller is synthesized under LMI restrictions to guarantee the system stability with the H∞ criteria, using the Lyapunov–Krasovskii functional approach. As the failures in actuators affect the state space model of the system, a novel polytopic model is employed to approach the plant function. In order to prove a practical feasibility, control performance characteristics for vibration suppression are evaluated under various road conditions

    Mejora del comportamiento lateral y vertical de un vehículo mediante una suspensión activa

    Get PDF
    Comunicación de: XXIII Congreso Nacional de Ingeniería Mecánica, 20-22 octubre 2021, Universidad de Jaén, España.Según la Dirección General de Tráfico, en 2018 se produjeron 102.299 accidentes de tráfico sólo en territorio nacional, los cuales se cobraron la vida de 1.806 personas. La gran mayoría de estos accidentes son debidos al factor humano, ya bien por conductas temerarias o baja capacidad de reacción por parte de los conductores. Para evitar estas situaciones y mejorar, por tanto, el comportamiento de los vehículos, se están incorporando en estos sistemas como son el ABS, ESC, RSC, suspensiones activas. En el campo de la seguridad vehicular también es muy relevante mejorar el confort durante la conducción, ya que está fuertemente ligado a problemas de salud [1]. El confort está relacionado con las aceleraciones que experimenta el vehículo. El reducir estas aceleraciones permite evitar que su comportamiento sea brusco, minimizando efectos adversos para el conductor y los pasajeros como es el latigazo vertical ante frenadas bruscas. En este trabajo, se propone el diseño de un sistema activo de suspensión que mejora tanto el comportamiento verticalcomo lateral del vehículo, evitando el despegue de las ruedas de la carretera y su vuelco, así como su confort. El diseño de la suspensión de un vehículo es una tarea compleja debido a la existencia de múltiples limitaciones físicas y perturbaciones estocásticas. Es difícil mantener simultáneamente un nivel adecuado de comodidad, maniobrabilidad y estabilidad. Para lograr la estabilidad del sistema, se ha diseñado un controlador robusto por H-infinito a partir del modelo de suspensión del vehículo completo [2] que minimizalas aceleraciones del vehículo para garantizar el confort, y que controla la transferencia de carga evitando que los neumáticos se despeguen de la carretera [3]. La optimización se realiza teniendo en cuenta las limitaciones de deflexión en la suspensión y las fuerzas máximas posibles en los actuadores.Este trabajo ha sido financiado por la Agencia Estatal de Investigación (AEI) del Ministerio de Ciencia e Innovación del Gobierno de España por medio del proyecto [RTI2018-095143-B-C21]
    corecore